MATH 579: Combinatorics

Exam 2 Solutions

1. Find the number of solutions in integers to $x_{1}+x_{2}+x_{3}=10$, with each $x_{i} \geq 3 i-5$.

The conditions are $x_{1} \geq-2, x_{2} \geq 1, x_{3} \geq 4$. Set $y_{1}=x_{1}+2, y_{2}=x_{2}-1, y_{3}=x_{3}-4$; having all of the $y_{i} \geq 0$ corresponds to our three conditions. We substitute to get $\left(y_{1}-2\right)+\left(y_{2}+1\right)+\left(y_{3}+4\right)=10$ or $y_{1}+y_{2}+y_{3}=7$. This has $\left(\binom{3}{7}\right)=\binom{9}{7}=\binom{9}{2}=\frac{9 \underline{2}}{2!}=36$ solutions. $\left(\right.$ or $\left.\binom{9}{2}=\frac{9!}{7!2!}=\frac{9 \cdot 8}{2!}=36\right)$
2. Calculate $B(5)$ using only its recurrence relation and $B(0)=1$.

We must repeatedly use the recurrence $B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} B(k)$. In turn, we calculate: $B(1)=$ $\binom{0}{0} B(0)=1 . \quad B(2)=\binom{1}{0} B(0)+\binom{1}{1} B(1)=1+1=2 . \quad B(3)=\binom{2}{0} B(0)+\binom{2}{1} B(1)+\binom{2}{2} B(2)=$ $1+2 \cdot 1+1 \cdot 2=5 . B(4)=\binom{3}{0} B(0)+\binom{3}{1} B(1)+\binom{3}{2} B(2)+\binom{3}{3} B(3)=1+3 \cdot 1+3 \cdot 2+1 \cdot 5=15$. Finally, $B(5)=\binom{4}{0} B(0)+\binom{4}{1} B(1)+\binom{4}{2} B(2)+\binom{4}{3} B(3)+\binom{4}{4} B(4)=1+4 \cdot 1+6 \cdot 2+4 \cdot 5+1 \cdot 15=52$.
3. Prove that $S(n, n-2)=\frac{1}{24} n(n-1)(n-2)(3 n-5)$, for all $n \geq 4$.
$S(n, n-2)$ counts partitions of $[n]$ into $n-2$ parts. These come in two types: (A) there is a part of size 3 (and the rest are of size 1); and (B) there are two parts of size 2 (and the rest are of size 1). For type A, there are $\binom{n}{3}$ ways to pick the big part, and the other parts are determined perforce. For type B, there are $\binom{n}{2}$ ways to pick one of the special parts, and $\binom{n-2}{2}$ ways to pick the other. However, this double-counts, as $\{1,2\}\{3,4\}$ is the same as $\{3,4\}\{1,2\}$. Hence, there are $\frac{1}{2}\binom{n}{2}\binom{n-2}{2}$ partitions of type B. Hence $S(n, n-2)=\binom{n}{3}+\frac{1}{2}\binom{n}{2}\binom{n-2}{2}=\frac{1}{6} n(n-1)(n-2)+\frac{1}{8} n(n-1)(n-2)(n-3)=$ $n(n-1)(n-2)\left(\frac{1}{6}+\frac{n-3}{8}\right)=n(n-1)(n-2) \frac{4+3(n-3)}{24}=n(n-1)(n-2) \frac{3 n-5}{24}$.
4. Prove that the number of integer partitions of n into at most k parts, is equal to the number of integer partitions of n into any number of parts, each not larger than k.
The first quantity is the number of integer partitions whose Ferrers diagram has at most k rows. The second quantity is the number of integer partitions whose Ferrers diagram has at most k columns. Conjugation is a bijection between integer partitions counted by the two quantities of interest, because it swaps rows with columns.
5. Find all self-conjugate integer partitions of 23.

It's easier to find all integer partitions into distinct odd numbers, and then go backward to selfconjugate integer partitions. There must be an odd number of odd summands (since 23 is odd), and it can't be 5 (since $1+3+5+7+9=25>23)$. Hence the possibilities are $23,19+3+1,17+5+$ $1,15+7+1,15+5+3,13+9+1,13+7+3,11+9+3,11+7+5$. Drawing these as symmetric hooks, we find the self-conjugate partitions as, respectively: $12+1+1+1+1+1+1+1+1+1+1+1$, $10+3+3+1+1+1+1+1+1+1,9+4+3+2+1+1+1+1+1,8+5+3+2+2+1+1+1$, $8+4+4+3+1+1+1+1,7+6+3+2+2+2+1,7+5+4+3+2+1+1,6+6+4+3+2+2$, $6+5+5+3+3+1$.
6. Determine the number of surjective functions $f: N \rightarrow K$, where $|N|=n,|K|=k$, the elements of N are indistinct, and the elements of K are distinct. Be sure to justify your answer.
Such functions are bijective with multisets, drawn from K, of size n, where each element of K appears at least once (due to surjectivity). The bijection is given by the number of domain elements mapping to a particular codomain element. In turn, these are bijective with unrestricted multisets, drawn from K, of size $n-k$. The bijection is defined as removing exactly one copy of each element of K, e.g. $\left\{1^{5} 2^{3} 3^{1}\right\} \leftrightarrow\left\{1^{4} 2^{2} 3^{0}\right\}$. These latter have an established formula, namely $\left(\binom{k}{n-k}\right)=\binom{n-1}{n-k}=$ $\binom{n-1}{k-1}$.

